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Overview

• Page rendering slows down when the thread 
rendering the page spends too much of its 
time waiting

• Explicit use of threads is cumbersome, 
requires quite a bit of code, and is error-prone

• Asp.Net 2.0+ has build-in support for 
asynchronous page processing



Inside w3wp.exe

• Process maintains a thread pool for servicing 
incoming requests

• Machine.config defines default pool setup
<system.web>

<processModel autoConfig="true"/>

<!--<processModel maxWorkerThreads="20" .../>-->

</system.web>

• autoConfig means Asp.Net determines the 
value for maxWorkerThreads based on 
hardware configuration (# of CPUs, cores, etc.)



Page processing overview

• Too many long-running worker threads 
deplete the thread pool. Future requests are 
queued, making the site appear slow
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Synchronous page processing

• One worker thread responsible 
for entire page lifecycle

• Control code get executed on 
the same worker thread as 
page

• Worker thread may spent 
much of its time waiting

• Event handlers of controls gets 
called in the same order as 
event handlers of page



Asynchronous page processing

• Page/control executes code 
within Begin/End on 
separate thread

• A worker threat continues 
rendering other controls on 
page

• Page is output to client 
when all async calls has 
returned and rendering is 
complete

• Multiple worker threads => 
faster page rendering 



Example
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Conclusion

• With little effort asynchronous processing can
speed up page rendering

• Make judicious use of asynchronous
processing

• Optimizing away one bottleneck most likely
makes another one appear elsewhere


