
Parallel page processing 
with Asp.Net

Ronnie Holm



Overview

• Page rendering slows down when the thread 
rendering the page spends too much of its 
time waiting

• Explicit use of threads is cumbersome, 
requires quite a bit of code, and is error-prone

• Asp.Net 2.0+ has build-in support for 
asynchronous page processing



Inside w3wp.exe

• Process maintains a thread pool for servicing 
incoming requests

• Machine.config defines default pool setup
<system.web>

<processModel autoConfig="true"/>

<!--<processModel maxWorkerThreads="20" .../>-->

</system.web>

• autoConfig means Asp.Net determines the 
value for maxWorkerThreads based on 
hardware configuration (# of CPUs, cores, etc.)



Page processing overview

• Too many long-running worker threads 
deplete the thread pool. Future requests are 
queued, making the site appear slow

Queue
request

waiting for 
worker
thread

Assign
processing of 

page to 
worker
thread

Worker
thread

manages
page lifecycle

When life
cycle

completes, 
worker

thread sends
response to 

client

Worker
thread

returns to 
thread pool 
waiting for 

next request



Synchronous page processing

• One worker thread responsible 
for entire page lifecycle

• Control code get executed on 
the same worker thread as 
page

• Worker thread may spent 
much of its time waiting

• Event handlers of controls gets 
called in the same order as 
event handlers of page



Asynchronous page processing

• Page/control executes code 
within Begin/End on 
separate thread

• A worker threat continues 
rendering other controls on 
page

• Page is output to client 
when all async calls has 
returned and rendering is 
complete

• Multiple worker threads => 
faster page rendering 



Example

Debugger output
Page_Load: 10

Page_Load: 10

Page_Load: 10

Page_Load: 10

Page_Load: 10

DoWork: 4

DoWork: 10

DoWork: 9

DoWork: 8

DoWork: 11

Render: 11 15:16:13 15:16:18

Render: 11 15:16:13 15:16:18

Render: 11 15:16:13 15:16:18

Render: 11 15:16:13 15:16:18

Render: 11 15:16:13 15:16:19

WaitControl.ascx.cs

Default.aspx.cs

Default.aspx

1

2

3

4

5



Conclusion

• With little effort asynchronous processing can
speed up page rendering

• Make judicious use of asynchronous
processing

• Optimizing away one bottleneck most likely
makes another one appear elsewhere


